*** Welcome to piglix ***

Magnus force


The Magnus effect commonly associates with a spinning object that drags air faster around one side, creating a difference in pressure that moves it in the direction of the lower-pressure side. It is a commonly observed effect in which a spinning ball (or cylinder) curves away from its principal flight path. It is important in many ball sports. It affects spinning missiles, and has some engineering uses, for instance in the design of rotor ships and Flettner aeroplanes.

In terms of ball games, topspin is defined as spin about an axis perpendicular to the direction of travel, where the top surface of the ball is moving forward with the spin. Under the Magnus effect, topspin produces a downward swerve of a moving ball, greater than would be produced by gravity alone, and backspin has the opposite effect. Likewise side-spin causes swerve to either side as seen during some baseball pitches, e.g. slider. The overall behaviour is similar to that around an aerofoil (see lift force), but with a circulation generated by mechanical rotation rather than airfoil action.

The Magnus effect is named after Heinrich Gustav Magnus, the German physicist who investigated it. The force on a rotating cylinder is known as Kutta–Joukowski lift, after Martin Wilhelm Kutta and Nikolai Zhukovsky (or Joukowski), who first analyzed the effect.

An intuitive understanding of the phenomenon comes from Newton's third law, that the deflective force on the body is no more or less than a reaction to the deflection that the body imposes on the air-flow. The body "pushes" the air down, and the air pushes the body upward. As a particular case, a lifting force is accompanied by a downward deflection of the air-flow. It is an angular deflection in the fluid flow, aft of the body.


...
Wikipedia

...