Magnetotactic bacteria (or MTB) are a polyphyletic group of bacteria discovered by Richard P. Blakemore in 1975, that orient along the magnetic field lines of Earth's magnetic field. To perform this task, these bacteria have organelles called magnetosomes that contain magnetic crystals. The biological phenomenon of microorganisms tending to move in response to the environment's magnetic characteristics is known as magnetotaxis (although this term is misleading in that every other application of the term taxis involves a stimulus-response mechanism). In contrast to the of animals, the bacteria contain fixed magnets that force the bacteria into alignment—even dead cells align, just like a compass needle. The alignment is believed to aid these organisms in reaching regions of optimal oxygen concentration.
The first description of magnetotactic bacteria appeared in 1963 in a publication of the Microbiology Institute (Italian: Istituto di Microbiologia) of the University of Pavia written by Salvatore Bellini. While observing bog sediments under his microscope, he noticed a group of bacteria that evidently oriented themselves in a unique direction. He realised these microorganisms moved according to the direction of the North Pole, and hence called them "magnetosensitive bacteria".
The first peer-reviewed article on magnetotactic bacteria appeared in a 1975 article in Science by Blakemore, a microbiologist at the Woods Hole Oceanographic Institution, who had similarly observed bacteria capable of orienting themselves in a certain direction: Blakemore realised that these microorganisms were following the direction of Earth's magnetic field, from south to north, and thus coined the term "magnetotactic".
These bacteria have been the subject of many experiments: they have even been aboard the Space Shuttle to examine their magnetotactic properties in the absence of gravity, but a definitive conclusion was not reached.