Magnetic survey is one of a number of methods used in archaeological geophysics. Magnetic surveys record spatial variation in the Earth's magnetic field. In archaeology, magnetic surveys are used to detect and map archaeological artefacts and features. Magnetic surveys are used in both terrestrial and marine archaeology.
Magnetometers used in geophysical survey may use a single sensor to measure the total magnetic field strength, or may use two (sometimes more) spatially separated sensors to measure the gradient of the magnetic field (the difference between the sensors). In most archaeological applications the latter (gradiometer) configuration is preferred because it provides better resolution of small, near-surface phenomena. Magnetometers may also use a variety of different sensor types. Proton precession magnetometers have largely been superseded by faster and more sensitive fluxgate and cesium instruments.
Every kind of material has unique magnetic properties, even those that we do not think of as being "magnetic". Different materials below the ground can cause local disturbances in the Earth’s magnetic field that are detectable with sensitive magnetometers. The chief limitation of magnetometer survey is that subtle features of interest may be obscured by highly magnetic geologic or modern materials.
In terrestrial archaeology, magnetic surveys are typically used for detailed mapping of archaeological features on known archaeological sites. More exceptionally, magnetometers are used for low-resolution exploratory surveys.
Several types of magnetometer are used in terrestrial archaeology. Early surveys, beginning in the 1950s, were conducted with proton precession magnetometers. Data collection with proton precession instruments was slow, making high sample density surveys impracticable. Data were manually recorded and plotted. The subsequent introduction of Fluxgate and cesium vapor magnetometers improved sensitivity, and greatly increased sampling speed, making high resolution surveys of large areas practical. Equally important was the development of computers to handle, process, and display large datasets.