Magnetic nanochains are a class of new magnetoresponsive and superparamagnetic nanostructures with highly anisotropic shapes (chain-like) which can be manipulated using magnetic field and magnetic field gradient. Such nanochains consist of self-assembled nanoparticle clusters which are magnetically assembled and fixated with an additional layer of silica. The primary building blocks of such advanced nanostructures are individual 10-nm sized superparamagnetic iron oxide nanoparticles (SPIONs). Nanoparticle clusters which are composed of a number of individual magnetic nanoparticles (ca. 100 SPIONs) are known as magnetic nanobeads with a diameter of 50–200 nanometers.
The fabrication of magnetic nanochains with controlled aspect ratio, a uniform size, and a well-defined shape is the focus of many world-leading research groups and high-tech companies. The magnetic nanochains possess attractive properties which are significant added value for many potential uses including magneto-mechanical actuation-associated nanomedicines in low and super-low frequency alternating magnetic field.