MOHID is short for Modelo Hidrodinâmico which is hydrodynamic model in Portuguese. The MOHID water-modelling system is a modular (see Modular programming) finite volumes (Finite-volume method) water-modelling system written in ANSI-Fortran95 using an Object-oriented programming philosophy, integrating diverse mathematical models and supporting graphical user interfaces that manage all the pre- and post-processing. It is an integrated modelling tool able to simulate physical and biogeochemical processes in the water column as well as in the sediments, and is also able to simulate the coupling between these two domains and the latter with the atmosphere.
The development of MOHID started back in 1985. Since that time a continuous development effort of new features has been maintained. Model updates and improvements were made available in a regular basis were used in the framework of many research and engineering projects.
Initially, MOHID was a two-dimensional tidal model written in Fortran 77 (Neves, 1985). This version also gave the present name to model, which derives from the Portuguese abbreviation of MOdelo HIDrodinâmico (hydrodynamic model) and was used to study estuaries and coastal areas using a classic finite-differences approach.
In the subsequent years, two-dimensional eulerian and Lagrangian transport modules were included in this model, as well as a Boussinesq model (Boussinesq approximation) for non-hydrostatic gravity waves (Silva, 1991). The first three-dimensional version of the model was introduced with the version MOHID 3D which used a vertical double Sigma coordinate (Santos, 1995). The limitations of the double Sigma coordinate revealed the necessity to develop a new version which could use a generic vertical coordinate, allowing the user to choose from several coordinate system, depending on the main processes in the study area. This necessity led to the introduction of the concept of the Finite volume method which was introduced in the version MESH 3D (Martins, 1999). In MESH 3D model, a 3D eulerian transport model, a 3D lagrangian transport model (Leitão, 1996) and a zero-dimensional water-quality model (Miranda, 1999) were included. This version revealed that the use of an integrated model based on a generic vertical coordinate is a very powerful tool.