*** Welcome to piglix ***

MISD


In computing, MISD (multiple instruction, single data) is a type of parallel computing architecture where many functional units perform different operations on the same data. Pipeline architectures belong to this type, though a purist might say that the data is different after processing by each stage in the pipeline. Fault-tolerant computers executing the same instructions redundantly in order to detect and mask errors, in a manner known as task replication, may be considered to belong to this type. Not many instances of this architecture exist, as MIMD and SIMD are often more appropriate for common data parallel techniques. Specifically, they allow better scaling and use of computational resources than MISD does. However, one prominent example of MISD in computing are the Space Shuttle flight control computers.

Systolic arrays (< wavefront processors), first described by H. T. Kung and Charles E. Leiserson are an example of MISD architecture. In a typical systolic array, parallel input data flows through a network of hard-wired processor nodes, resembling the human brain which combine, process, merge or sort the input data into a derived result.

Systolic arrays are often hard-wired for a specific operation, such as "multiply and accumulate", to perform massively parallel integration, convolution, correlation, matrix multiplication or data sorting tasks. A Systolic array typically consists of a large monolithic network of primitive computing nodes which can be hardwired or software configured for a specific application. The nodes are usually fixed and identical, while the interconnect is programmable. More general wavefront processors, by contrast, employ sophisticated and individually programmable nodes which may or may not be monolithic, depending on the array size and design parameters. Because the wave-like propagation of data through a systolic array resembles the pulse of the human circulatory system, the name systolic was coined from medical terminology.


...
Wikipedia

...