*** Welcome to piglix ***

MIL-STD-810


MIL-STD-810, Environmental Engineering Considerations and Laboratory Tests is a United States Military Standard that emphasizes tailoring an equipment's environmental design and test limits to the conditions that it will experience throughout its service life, and establishing chamber test methods that replicate the effects of environments on the equipment rather than imitating the environments themselves. The MIL-STD-810 test series are approved for use by all departments and agencies of the United States Department of Defense (DoD). Although prepared specifically for military applications, the standard is often used for commercial products as well. The current document revision (as of 2012) is MIL-STD-810G which was issued on October 31, 2008. It superseded MIL-STD-810F released on January 1, 2000 which was last updated on May 5, 2003. The standard's guidance and test methods are intended to: (i) Define environmental stress sequences, durations, and levels of equipment life cycles; (ii) Be used to develop analysis and test criteria tailored to the equipment and its environmental life cycle; (iii) Evaluate equipment's performance when exposed to a life cycle of environmental stresses; (iv) Identify deficiencies, shortcomings, and defects in equipment design, materials, manufacturing processes, packaging techniques, and maintenance methods; and (v) Demonstrate compliance with contractual requirements.

MIL-STD-810 is maintained by a Tri-Service partnership that includes the USAF, the US Army, and the US Navy. The U.S. Army Test and Evaluation Command, or ATEC, serves as Lead Standardization Activity / Preparing Activity, and is chartered under the Defense Standardization Program (DSP) with maintaining the functional expertise and serving as the DoD-wide technical focal point for the standard.

MIL-STD-810 addresses a broad range of environmental conditions that include: low pressure for altitude testing; exposure to high and low temperatures plus temperature shock (both operating and in storage); rain (including wind blown and freezing rain); humidity, fungus, salt fog for rust testing; sand and dust exposure; explosive atmosphere; leakage; acceleration; shock and transport shock; gunfire vibration; and random vibration. The standard describes environmental management and engineering processes that can be of enormous value to generate confidence in the environmental worthiness and overall durability of a system design. The standard contains military acquisition program planning and engineering direction to consider the influences that environmental stresses have on equipment throughout all phases of its service life. The document does not impose design or test specifications. Rather, it describes the environmental tailoring process that results in realistic material designs and test methods based on material system performance requirements.


...
Wikipedia

...