*** Welcome to piglix ***

Mössbauer Effect


The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in a solid. Its main application is in Mössbauer spectroscopy.

In the Mössbauer effect, a narrow resonance for nuclear gamma emission and absorption results from the momentum of recoil being delivered to a surrounding crystal lattice rather than to the emitting or absorbing nucleus alone. When this occurs, no gamma energy is lost to the kinetic energy of recoiling nuclei at either the emitting or absorbing end of a gamma transition: emission and absorption occur at the same energy, resulting in strong, resonant absorption.

The emission and absorption of X-rays by gases had been observed previously, and it was expected that a similar phenomenon would be found for gamma rays, which are created by nuclear transitions (as opposed to X-rays, which are typically produced by electronic transitions). However, attempts to observe nuclear resonance produced by gamma-rays in gases failed due to energy being lost to recoil, preventing resonance (the Doppler effect also broadens the gamma-ray spectrum). Mössbauer was able to observe resonance in nuclei of solid iridium, which raised the question of why gamma-ray resonance was possible in solids, but not in gases. Mössbauer proposed that, for the case of atoms bound into a solid, under certain circumstances a fraction of the nuclear events could occur essentially without recoil. He attributed the observed resonance to this recoil-free fraction of nuclear events.

The Mössbauer effect was one of the last major discoveries in physics to be originally reported in the German language. The first report in English was a letter describing a repetition of the experiment.

The discovery was rewarded with the Nobel Prize in Physics in 1961 together with Robert Hofstadter's research of electron scattering in atomic nuclei.


...
Wikipedia

...