*** Welcome to piglix ***

Lotus effect


The lotus effect refers to self-cleaning properties that are a result of ultrahydrophobicity as exhibited by the leaves of Nelumbo or "lotus flower". Dirt particles are picked up by water droplets due to the micro- and nanoscopic architecture on the surface, which minimizes the droplet's adhesion to that surface. Ultrahydrophobicity and self-cleaning properties are also found in other plants, such as Tropaeolum (nasturtium), Opuntia (prickly pear), Alchemilla, cane, and also on the wings of certain insects.

The phenomenon of ultrahydrophobicity was first studied by Dettre and Johnson in 1964 using rough hydrophobic surfaces. Their work developed a theoretical model based on experiments with glass beads coated with paraffin or PTFE telomer. The self-cleaning property of ultrahydrophobic micro-nanostructured surfaces was studied by Barthlott and Ehler in 1977, who described such self-cleaning and ultrahydrophobic properties for the first time as the "lotus effect"; perfluoroalkyl and perfluoropolyether ultrahydrophobic materials were developed by Brown in 1986 for handling chemical and biological fluids. Other biotechnical applications have emerged since the 1990s.

The high surface tension of water causes droplets to assume a nearly spherical shape, since a sphere has minimal surface area, and this shape therefore demands least solid-liquid surface energy. On contact with a surface, adhesion forces result in wetting of the surface. Either complete or incomplete wetting may occur depending on the structure of the surface and the fluid tension of the droplet. The cause of self-cleaning properties is the hydrophobic water-repellent double structure of the surface. This enables the contact area and the adhesion force between surface and droplet to be significantly reduced resulting in a self-cleaning process. This hierarchical double structure is formed out of a characteristic epidermis (its outermost layer called the cuticle) and the covering waxes. The epidermis of the lotus plant possesses papillae with 10 µm to 20 µm in height and 10 µm to 15 µm in width on which the so-called epicuticular waxes are imposed. These superimposed waxes are hydrophobic and form the second layer of the double structure. This system regenerates. This bio-chemical property is responsible for the functioning of the water repellency of the surface.

The hydrophobicity of a surface can be measured by its contact angle. The higher the contact angle the higher the hydrophobicity of a surface. Surfaces with a contact angle < 90° are referred to as hydrophilic and those with an angle >90° as hydrophobic. Some plants show contact angles up to 160° and are called ultrahydrophobic, meaning that only 2–3% of the surface of a droplet (of typical size) is in contact. Plants with a double structured surface like the lotus can reach a contact angle of 170°, whereby the droplet's contact area is only 0.6%. All this leads to a self-cleaning effect.


...
Wikipedia

...