In flight dynamics, longitudinal static stability is the stability of an aircraft in the longitudinal, or pitching, plane under steady flight conditions. This characteristic is important in determining whether a human pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength.
As any vehicle moves it will be subjected to minor changes in the forces that act on it, and in its speed.
For a vehicle to possess positive static stability it is not necessary for its speed and orientation to return to exactly the speed and orientation that existed before the minor change that caused the upset. It is sufficient that the speed and orientation do not continue to diverge but undergo at least a small change back towards the original speed and orientation.
The longitudinal stability of an aircraft refers to the aircraft's stability in the pitching plane - the plane which describes the position of the aircraft's nose in relation to its tail and the horizon. (Other stability modes are directional stability and lateral stability.)
If an aircraft is longitudinally stable, a small increase in angle of attack will cause the pitching moment on the aircraft to change so that the angle of attack decreases. Similarly, a small decrease in angle of attack will cause the pitching moment to change so that the angle of attack increases.
The pilot of an aircraft with positive longitudinal stability, whether it is a human pilot or an autopilot, has an easy task to fly the aircraft and maintain the desired pitch attitude which, in turn, makes it easy to control the speed, angle of attack and fuselage angle relative to the horizon. The pilot of an aircraft with negative longitudinal stability has a more difficult task to fly the aircraft. It will be necessary for the pilot devote more effort, make more frequent inputs to the elevator control, and make larger inputs, in an attempt to maintain the desired pitch attitude.
Most successful aircraft have positive longitudinal stability, providing the aircraft's center of gravity lies within the approved range. Some acrobatic and combat aircraft have low-positive or neutral stability to provide high maneuverability. Some advanced aircraft have a form of low-negative stability called relaxed stability to provide extra-high maneuverability.