In phylogenetics, long branch attraction (LBA) is a form of systematic error whereby distantly related lineages are incorrectly inferred to be closely related. LBA arises when the amount of molecular or morphological change accumulated within a lineage is sufficient to cause that lineage to appear similar (thus closely related) to another long-branched lineage, solely because they have both undergone a large amount of change, rather than because they are related by descent. Such bias is more common when the overall divergence of some taxa results in long branches within a phylogeny. Long-branches are often attracted to the base of a phylogenetic tree, because the lineage included to represent an outgroup is often also long-branched. The frequency of true LBA is unclear and often debated. Although often viewed as a failing of parsimony-based methodology, LBA can result from a variety of scenarios and be inferred under multiple analysis paradigms.
LBA was first recognized as problematic when analyzing discrete morphological character sets under parsimony criteria, however Maximum Likelihood analyses of DNA or protein sequences are also susceptible. A simple hypothetical example can be found in Felsenstein 1978 where it is demonstrated that for certain unknown "true" trees, some methods can show bias for grouping long branches, ultimately resulting in the inference of a false sister relationship. Often this is because convergent evolution of one or more characters included in the analysis has occurred in multiple taxa. Although they were derived independently, these shared traits can be misinterpreted in the analysis as being shared due to common ancestry.
In phylogenetic and clustering analyses, LBA is a result of the way clustering algorithms work: terminals or taxa with many autapomorphies (character states unique to a single branch) may by chance exhibit the same states as those on another branch (homoplasy). A phylogenetic analysis will group these taxa together as a clade unless other synapomorphies outweigh the homoplastic features to group together true sister taxa.