The London moment (after Fritz London) is a quantum-mechanical phenomenon whereby a spinning superconductor generates a magnetic field whose axis lines up exactly with the spin axis. The term may also refer to the magnetic moment of any rotation of any superconductor, caused by the electrons lagging behind the rotation of the object, although the field strength is independent of the charge carrier density in the superconductor.
A magnetometer determines the orientation of the generated field, which is interpolated to determine the axis of rotation. Gyroscopes of this type can be extremely accurate and stable. For example, those used in the Gravity Probe B experiment measured changes in gyroscope spin axis orientation to better than 0.5 milliarcseconds (1.4×10−7 degrees) over a one-year period. This is equivalent to an angular separation the width of a human hair viewed from 32 kilometers (20 miles) away.
The GP-B gyro consists of a nearly-perfect spherical rotating mass made of fused quartz, which provides a dielectric support for a thin layer of niobium superconducting material. To eliminate friction found in conventional bearings, the rotor assembly is centered by the electric field from six electrodes. After the initial spin-up by a jet of helium which brings the rotor to 4,000 RPM, the polished gyroscope housing is evacuated to an ultra-high vacuum to further reduce drag on the rotor. Provided the suspension electronics remain powered, the extreme rotational symmetry, lack of friction, and low drag will allow the angular momentum of the rotor to keep it spinning for about 15,000 years.