Log-linear analysis is a technique used in statistics to examine the relationship between more than two categorical variables. The technique is used for both hypothesis testing and model building. In both these uses, models are tested to find the most parsimonious (i.e., least complex) model that best accounts for the variance in the observed frequencies. (A Pearson's chi-square test could be used instead of log-linear analysis, but that technique only allows for two of the variables to be compared at a time.)
Log-linear analysis uses a likelihood ratio statistic : that has an approximate chi-square distribution when the sample size is large:
where
There are three assumptions in log-linear analysis:
1. The observations are independent and random;
2. Observed frequencies are normally distributed about expected frequencies over repeated samples. This is a good approximation if both (a) the expected frequencies are greater than or equal to 5 for 80% or more of the categories and (b) all expected frequencies are greater than 1. Violations to this assumption result in a large reduction in power. Suggested solutions to this violation are: delete a variable, combine levels of one variable (e.g., put males and females together), or collect more data.
3. The logarithm of the expected value of the response variable is a linear combination of the explanatory variables. This assumption is so fundamental that it is rarely mentioned, but like most linearity assumptions, it is rarely exact and often simply made to obtain a tractable model.