*** Welcome to piglix ***

Locally convex space


In functional analysis and related areas of mathematics, locally convex topological vector spaces or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm.

Metrizable topologies on vector spaces have been studied since their introduction in Maurice Frechet's 1902 PhD thesis Sur quelques points du calcul fonctionnel (wherein the notion of a metric was first introduced). After the notion of a general topological space was defined by Felix Hausdorff in 1914, although locally convex topologies were implicitly used by some mathematicians, up to 1934 only John von Neumann would seem to have explicitly defined the weak topology on Hilbert spaces and strong operator topology on operators on Hilbert spaces. Finally, in 1935 von Neumann introduced the general definition of a locally convex space (called a convex space by him).


...
Wikipedia

...