In mathematics, a function is locally bounded if it is bounded around every point. A of functions is locally bounded if for any point in their domain all the functions are bounded around that point and by the same number.
A real-valued or complex-valued function f defined on some topological space X is called locally bounded if for any x0 in X there exists a neighborhood A of x0 such that f (A) is a bounded set, that is, for some number M>0 one has
for all x in A.
That is to say, for each x one can find a constant, depending on x, which is larger than all the values of the function in the neighborhood of x. Compare this with a bounded function, for which the constant does not depend on x. Obviously, if a function is bounded then it is locally bounded. The converse is not true in general.
This definition can be extended to the case when f takes values in some metric space. Then the inequality above needs to be replaced with
for all x in A, where d is the distance function in the metric space, and a is some point in the metric space. The choice of a does not affect the definition. Choosing a different a will at most increase the constant M for which this inequality is true.
is bounded, because 0≤ f (x) ≤ 1 for all x. Therefore, it is also locally bounded.
is not bounded, as it becomes arbitrarily large. However, it is locally bounded because for each a, |f(x)| ≤ M in the neighborhood (a - 1,a + 1), where M = 2|a|+3.
for x ≠ 0 and taking the value 0 for x=0 is not locally bounded. In any neighborhood of 0 this function takes values of arbitrarily large magnitude.
A set (also called a family) U of real-valued or complex-valued functions defined on some topological space X is called locally bounded if for any x0 in X there exists a neighborhood A of x0 and a positive number M such that