*** Welcome to piglix ***

List of most massive stars


This is a list of the most massive stars so far discovered, in solar masses (M).

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to revision. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars’ temperatures and absolute brightnesses. All the listed masses are uncertain: both the theory and the measurements are pushing the limits of current knowledge and technology. Either measurement or theory, or both, could be incorrect. For example, VV Cephei could be between 25–40 M, or 100 M, depending on which property of the star is examined.

Massive stars are rare; astronomers must look very far from the Earth to find one. All the listed stars are many thousands of light years away and that alone makes measurements difficult. In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses and greatly complicates the issue of estimating internal chemical compositions. For some methods, different determinations of chemical composition lead to different estimates of mass. In addition, the clouds of gas make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually consist of two or more companions in close orbit, each star being massive in itself but not necessarily supermassive. Other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star. Without being able to see inside the surrounding cloud, it is difficult to know the truth of the matter. More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100-200 solar mass range.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR21a, and WR20a. Masses for all three were obtained from orbital measurements – for a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion. This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but lightcurves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight. Therefore, the masses of eclipsing binaries are the sole ones to be derived with some accuracy.


...
Wikipedia

...