This is a list of CPU power dissipation figures of various consumer central processing units (CPUs).
Note that these figures include power dissipation due to energy lost by the computer's power supply and some minor peripherals. However, since the CPU component of these early computers easily accounted for most of the computer's power dissipation, they are mentioned here:
If not stated otherwise, the watts dissipated refers to the peak-value thermal design power for a whole processor family. Since thermal design power relates to the potential maximum thermally significant power used by the most energy using member of a processor family, it is not useful for comparing processors within a particular family. It is also not useful for comparison of the energy efficiency of individual processors in different families, because it relates to the family, not the individual CPU. Thermal design power is defined differently by different manufacturers, so it is not comparable between manufacturers.
Different architectures vary in how many operations they perform per clock cycle, so MHz/W values are not useful for comparing processors using different internal structure (see Megahertz myth). Since TDP is defined for families, not individual processors, MHz/TDP W are not useful for comparing processors using the same internal structure.
For measures of energy efficiency in computing, see Performance per watt.
Marvell acquired an ARM license in 2003, and bought Intel's XScale line in 2006, according to.
Launched in 1999, the Pentium III became Intel's first processor to break the 1 GHz clock speed barrier. By 2000, the Pentium III was replaced by the Pentium 4, which performed even worse in certain applications. Although, in 2001, Intel had resurrected the Pentium III by introducing the Tualatin core. The Tualatin-based Pentium III had well outperformed the Willamette-based Pentium 4 in a variety of applications. However, it appeared that Intel wanted to market the Pentium 4 as their main processor and tried to "kill" the Pentium III by reducing the L2 cache (in the non-S variants) to 256 KB from 512 KB in the Katmai and Coppermine cores and by making the Tualtain-based Pentium IIIs incompatible with older socket 370 motherboards. The Pentium III-S have 512 KB L2 cache and have dual-processor support.
Released on November 20, 2000, the Pentium 4 was based on an all new microarchitecture codenamed NetBurst. Pentium 4 processors achieved their high clock speeds by using an extremely long instruction pipeline (20 stages in the Willamette, Northwood and Gallatin cores and 31 stages in the Prescott, Prescott 2M and Cedar Mill cores). The Pentium 4 became Intel's hottest-running single-core processor along with their processor to have the longest instruction pipeline to date. Not only that, but the Pentium 4's performance was usually disappointing, as it could not often match the performance of AMD's Athlon, Athlon XP and Athlon 64 processors, and for the first models, even Intel's own Pentium III or even low-end processors such as the AMD Duron or the P6-based Intel Celeron. Intel tried to fix this problem with the introduction of the Prescott core, but it made the Pentium 4's problems even worse, as they performed worse than Northwood-based Pentium 4s in the same clock speed range and generated more heat. The Pentium 4 had reached a clock speed limit of 3.8 GHz by November, 2004 and on January 5, 2006 Intel released the final Pentium 4 models using the Cedar Mill core, which gave off less heat than Prescott. All processors in the Pentium 4 HT range have Hyper-threading, a feature that makes one physical CPU core work as two logical cores.