*** Welcome to piglix ***

Liquid metal fast reactor


A liquid metal cooled nuclear reactor, liquid metal fast reactor or LMFR is an advanced type of nuclear reactor where the primary coolant is a liquid metal. Liquid metal cooled reactors were first adapted for nuclear submarine use but have also been extensively studied for power generation applications.

Because the metal coolants have much higher heat capacity than water, which is used in most reactor designs, they remove heat more rapidly and allow much higher power density. This makes them attractive in situations where size and weight are at a premium, like on ships and submarines. To improve cooling with water, most reactor designs are highly pressurized to raise the boiling point, which presents safety and maintenance issues that liquid metal designs lack. Additionally, the high temperature of the liquid metal can be used to produce vapour at higher temperature than in a water cooled reactor, leading to a higher thermodynamic efficiency. This makes them attractive for improving power output in conventional nuclear power plants.

Liquid metals, being electrically highly conductive, can be moved by electromagnetic pumps. Disadvantages include difficulties associated with inspection and repair of a reactor immersed in opaque molten metal, and depending on the choice of metal, fire hazard risk (for alkali metals), corrosion and/or production of radioactive activation products may be an issue.

In practice, all liquid metal cooled reactors are fast neutron reactors, and to date most fast neutron reactors have been liquid metal cooled fast breeder reactors (LMFBRs), or naval propulsion units. The liquid metals used typically need good heat transfer characteristics. Fast neutron reactor cores tend to generate a lot of heat in a small space when compared to reactors of other classes. A low neutron absorption is desirable in any reactor coolant, but especially important for a fast reactor, as the good neutron economy of a fast reactor is one of its main advantages. Since slower neutrons are more easily absorbed, the coolant should ideally have a low moderation of neutrons. It is also important that the coolant does not cause excessive corrosion of the structural materials, and that its melting and boiling points are suitable for the reactor's operating temperature.


...
Wikipedia

...