*** Welcome to piglix ***

Linux kernel interfaces


The Linux kernel provides several interfaces to user-space applications that are used for different purposes and that have different properties by design. There are two types of application programming interface (API) in the Linux kernel that are not to be confused: the "kernel–user space" API and the "kernel internal" API.

The Linux API is the kernel–user space API, which allows programs in user space to access system resources and services of the Linux kernel. It is composed out of the System Call Interface of the Linux kernel and the subroutines in the GNU C Library (glibc). The focus of the development of the Linux API has been to provide the usable features of the specifications defined in POSIX in a way which is reasonably compatible, robust and performant, and to provide additional useful features not defined in POSIX, just as the kernel–user space APIs of other systems implementing the POSIX API also provide additional features not defined in POSIX.

The Linux API, by choice, has been kept stable over the decades and never breaks; this stability guarantees the portability of source code. At the same time, Linux kernel developers have historically been conservative and meticulous about introducing new system calls.

Much available free and open-source software is written for the POSIX API. Since so much more development flows into the Linux kernel as compared to the other POSIX-compliant combinations of kernel and C standard library, the Linux kernel and its API have been augmented with additional features. As far as these additional features provide a technical advantage, programming for the Linux API is preferred over the POSIX-API. Well-known current examples are udev, systemd and Weston. People such as Lennart Poettering openly advocate to prefer the Linux API over the POSIX API, where this offers advantages.

At FOSDEM 2016, Michael Kerrisk explained some of the perceived issues with the Linux kernel's user-space API, describing that it contains multiple design errors by being non-extensible, unmaintainable, overly complex, of limited purpose, in violation of standards, and inconsistent. Most of those mistakes cannot be fixed because doing so would break the ABI that the kernel presents to the user space.


...
Wikipedia

...