In mathematics two links L0⊂Sn{\displaystyle L_{0}\subset S^{n}} and L1⊂Sn{\displaystyle L_{1}\subset S^{n}} are concordant if there is an embedding f:L0×[0,1]→Sn×[0,1]{\displaystyle f:L_{0}\times [0,1]\to S^{n}\times [0,1]} such that f(L0×{0})=L0×{0}{\displaystyle f(L_{0}\times \{0\})=L_{0}\times \{0\}} and f(L0×{1})=L1×{1}{\displaystyle f(L_{0}\times \{1\})=L_{1}\times \{1\}}.