*** Welcome to piglix ***

Linear optical quantum computing


Linear Optical Quantum Computing or Linear Optics Quantum Computation (LOQC) is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements (including beam splitters, phase shifters, and mirrors) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

Although there are many other implementations for quantum information processing (QIP) and quantum computation, optical quantum systems are prominent candidates, since they link quantum computation and quantum communication in the same framework. In optical systems for quantum information processing, the unit of light in a given mode—or photon—is used to represent a qubit. Superpositions of quantum states can be easily represented, encrypted, transmitted and detected using photons. Besides, linear optical elements of optical systems may be the simplest building blocks to realize quantum operations and quantum gates. Each linear optical element equivalently applies a unitary transformation on a finite number of qubits. The system of finite linear optical elements constructs a network of linear optics, which can realize any quantum circuit diagram or quantum network based on the quantum circuit model. Quantum computing with continuous variables is also possible under the linear optics scheme.


...
Wikipedia

...