*** Welcome to piglix ***

Light trap


Optical tweezers (originally called "single-beam gradient force trap") are scientific instruments that use a highly focused laser beam to provide an attractive or repulsive force (typically on the order of piconewtons), depending on the refractive index mismatch to physically hold and move microscopic dielectric objects similar to tweezers. Optical tweezers have been particularly successful in studying a variety of biological systems in recent years.

The detection of optical scattering and gradient forces on micron sized particles was first reported in 1970 by Arthur Ashkin, a scientist working at Bell Labs. Years later, Ashkin and colleagues reported the first observation of what is now commonly referred to as an optical tweezer: a tightly focused beam of light capable of holding microscopic particles stable in three dimensions.

One of the authors of this seminal 1986 paper, former United States Secretary of Energy Steven Chu, would go on to use optical tweezing in his work on cooling and trapping neutral atoms. This research earned Chu the 1997 Nobel Prize in Physics along with Claude Cohen-Tannoudji and William D. Phillips. In an interview, Steven Chu described how Ashkin had first envisioned optical tweezing as a method for trapping atoms. Ashkin was able to trap larger particles (10 to 10,000 nanometers in diameter) but it fell to Chu to extend these techniques to the trapping of neutral atoms (0.1 nanometers in diameter) utilizing resonant laser light and a magnetic gradient trap (cf. Magneto-optical trap).

In the late 1980s, Arthur Ashkin and Joseph M. Dziedzic demonstrated the first application of the technology to the biological sciences, using it to trap an individual tobacco mosaic virus and Escherichia coli bacterium. Throughout the 1990s and afterwards, researchers like Carlos Bustamante, James Spudich, and Steven Block pioneered the use of optical trap force spectroscopy to characterize molecular-scale biological motors. These molecular motors are ubiquitous in biology, and are responsible for locomotion and mechanical action within the cell. Optical traps allowed these biophysicists to observe the forces and dynamics of nanoscale motors at the single-molecule level; optical trap force-spectroscopy has since led to greater understanding of the stochastic nature of these force-generating molecules.


...
Wikipedia

...