*** Welcome to piglix ***

Lifting theory


In mathematics, lifting theory was first introduced by John von Neumann in his (1931) pioneering paper (answering a question raised by Alfréd Haar), followed later by Dorothy Maharam’s (1958) paper, and by A. Ionescu Tulcea and C. Ionescu Tulcea’s (1961) paper. Lifting theory was motivated to a large extent by its striking applications; for its development up to 1969, see the Ionescu Tulceas' work and the monograph, now a standard reference in the field. Lifting theory continued to develop after 1969, yielding significant new results and applications.

A lifting on a measure space (X, Σ, μ) is a linear and multiplicative inverse

of the quotient map

In other words, a lifting picks from every equivalence class [f] of bounded measurable functions modulo negligible functions a representative— which is henceforth written T([f]) or T[f] or simply Tf — in such a way that

Liftings are used to produce disintegrations of measures, for instance conditional probability distributions given continuous random variables, and fibrations of Lebesgue measure on the level sets of a function.

Theorem. Suppose (X, Σ, μ) is complete. Then (X, Σ, μ) admits a lifting if and only if there exists a collection of mutually disjoint integrable sets in Σ whose union is X. In particular, if (X, Σ, μ) is the completion of a σ-finite measure or of an inner regular Borel measure on a locally compact space, then (X, Σ, μ) admits a lifting.

The proof consists in extending a lifting to ever larger sub-σ-algebras, applying Doob's martingale convergence theorem if one encounters a countable chain in the process.


Suppose (X, Σ, μ) is complete and X is equipped with a completely regular Hausdorff topology τ ⊂ Σ such that the union of any collection of negligible open sets is again negligible – this is the case if (X, Σ, μ) is σ-finite or comes from a Radon measure. Then the support of μ, Supp(μ), can be defined as the complement of the largest negligible open subset, and the collection Cb(X, τ) of bounded continuous functions belongs to .


...
Wikipedia

...