In control system theory, the Liénard–Chipart criterion is a stability criterion modified from the Routh–Hurwitz stability criterion, proposed by A. Liénard and M. H. Chipart. This criterion has a computational advantage over the Routh–Hurwitz criterion because it involves only about half the number of determinant computations.
The Routh–Hurwitz stability criterion says that a necessary and sufficient condition for all the roots of the polynomial with real coefficients
to have negative real parts (i.e. is Hurwitz stable) is that
where is the i-th principal minor of the Hurwitz matrix associated with .