Lev G. Schnirelmann | |
---|---|
Born |
Gomel, Russian Empire |
January 2, 1905
Died | September 24, 1938 Moscow, RSFSR, USSR |
(aged 33)
Nationality | Russian |
Fields | Mathematics |
Institutions | Steklov Mathematical Institute |
Alma mater | Moscow State University |
Doctoral advisor | Nikolai Luzin |
Known for |
Lusternik–Schnirelmann category Schnirelmann density Schnirelmann's constant Schnirelmann's theorem |
Lev Genrikhovich Schnirelmann (also Shnirelman, Shnirel'man; Лев Ге́нрихович Шнирельма́н; January 2, 1905 – September 24, 1938) was a Soviet mathematician who worked on number theory, topology and differential geometry.
He sought to prove Goldbach's conjecture. In 1930, using the Brun sieve, he proved that any natural number greater than 1 can be written as the sum of not more than C prime numbers, where C is an effectively computable constant.
His other fundamental work is joint with Lazar Lyusternik. Together, they developed the Lusternik–Schnirelmann category, as it is called now, based on the previous work by Henri Poincaré, David Birkhoff, and Marston Morse. The theory gives a global invariant of spaces, and has led to advances in differential geometry and topology. They also proved the theorem of the three geodesics, that a Riemannian manifold topologically equivalent to a sphere has at least three simple closed geodesics.
Schnirelmann graduated from Moscow State University (1925) and then worked in Steklov Mathematical Institute (1934–1938). His advisor was Nikolai Luzin.