*** Welcome to piglix ***

Leslie matrix


In applied mathematics, the Leslie matrix is a discrete, age-structured model of population growth that is very popular in population ecology. It was invented by and named after Patrick H. Leslie. The Leslie matrix (also called the Leslie model) is one of the most well known ways to describe the growth of populations (and their projected age distribution), in which a population is closed to migration, growing in an unlimited environment, and where only one sex, usually the female, is considered.

The Leslie matrix is used in ecology to model the changes in a population of organisms over a period of time. In a Leslie model, the population is divided into groups based on age classes. A similar model which replaces age classes with ontogenetic stages is called a Lefkovitch matrix, whereby individuals can both remain in the same stage class or move on to the next one. At each time step, the population is represented by a vector with an element for each age class where each element indicates the number of individuals currently in that class.

The Leslie matrix is a square matrix with the same number of rows and columns as the population vector has elements. The (i,j)th cell in the matrix indicates how many individuals will be in the age class i at the next time step for each individual in stage j. At each time step, the population vector is multiplied by the Leslie matrix to generate the population vector for the subsequent time step.

To build a matrix, some information must be known from the population:

From the observations that at time t+1 is simply the sum of all offspring born from the previous time step and that the organisms surviving to time t+1 are the organisms at time t surviving at probability , one gets . This then implies the following matrix representation:


...
Wikipedia

...