*** Welcome to piglix ***

Leopoldt's conjecture


In algebraic number theory, Leopoldt's conjecture, introduced by H.-W. Leopoldt (1962, 1975), states that the p-adic regulator of a number field does not vanish. The p-adic regulator is an analogue of the usual regulator defined using p-adic logarithms instead of the usual logarithms, introduced by H.-W. Leopoldt (1962).

Leopoldt proposed a definition of a p-adic regulator Rp attached to K and a prime number p. The definition of Rp uses an appropriate determinant with entries the p-adic logarithm of a generating set of units of K (up to torsion), in the manner of the usual regulator. The conjecture, which for general K is still open as of 2009, then comes out as the statement that Rp is not zero.

Let K be a number field and for each prime P of K above some fixed rational prime p, let UP denote the local units at P and let U1,P denote the subgroup of principal units in UP. Set

Then let E1 denote the set of global units ε that map to U1 via the diagonal embedding of the global units in E.

Since is a finite-index subgroup of the global units, it is an abelian group of rank , where is the number of real embeddings of and the number of pairs of complex embeddings. Leopoldt's conjecture states that the -module rank of the closure of embedded diagonally in is also


...
Wikipedia

...