*** Welcome to piglix ***

Lemniscatic case


In mathematics, a lemniscatic elliptic function is an elliptic function related to the arc length of a lemniscate of Bernoulli studied by Giulio Carlo de' Toschi di Fagnano in 1718. It has a square period lattice and is closely related to the Weierstrass elliptic function when the Weierstrass invariants satisfy g2 = 1 and g3 = 0.

In the lemniscatic case, the minimal half period ω1 is real and equal to

where Γ is the gamma function. The second smallest half period is pure imaginary and equal to 1. In more algebraic terms, the period lattice is a real multiple of the Gaussian integers.

The constants e1, e2, and e3 are given by

The case g2 = a, g3 = 0 may be handled by a scaling transformation. However, this may involve complex numbers. If it is desired to remain within real numbers, there are two cases to consider: a > 0 and a < 0. The period parallelogram is either a square or a rhombus.

The lemniscate sine (Latin: sinus lemniscatus) and lemniscate cosine (Latin: cosinus lemniscatus) functions sinlemn aka sl and coslemn aka cl are analogues of the usual sine and cosine functions, with a circle replaced by a lemniscate. They are defined by


...
Wikipedia

...