Lemmatisation (or lemmatization) in linguistics is the process of grouping together the inflected forms of a word so they can be analysed as a single item, identified by the word's lemma, or dictionary form.
In computational linguistics, lemmatisation is the algorithmic process of determining the lemma of a word based on its intended meaning. Unlike stemming, lemmatisation depends on correctly identifying the intended part of speech and meaning of a word in a sentence, as well as within the larger context surrounding that sentence, such as neighboring sentences or even an entire document. As a result, developing efficient lemmatisation algorithms is an open area of research.
In many languages, words appear in several inflected forms. For example, in English, the verb 'to walk' may appear as 'walk', 'walked', 'walks', 'walking'. The base form, 'walk', that one might look up in a dictionary, is called the lemma for the word. The association of the base form with a part of speech is often called a lexeme of the word.
Lemmatisation is closely related to stemming. The difference is that a stemmer operates on a single word without knowledge of the context, and therefore cannot discriminate between words which have different meanings depending on part of speech. However, stemmers are typically easier to implement and run faster. The reduced "accuracy" may not matter for some applications. In fact, when used within information retrieval systems, stemming improves query recall accuracy, or true positive rate, when compared to lemmatisation. Nonetheless, stemming reduces precision, or true negative rate, for such systems.
For instance:
Document indexing software like Lucene can store the base stemmed format of the word without the knowledge of meaning, but only considering word formation grammar rules. The stemmed word itself might not be a valid word: 'lazy', as seen in the example below, is stemmed by many stemmers to 'lazi'. This is because the purpose of stemming is not to produce the appropriate lemma – that is a more challenging task that requires knowledge of context. The main purpose of stemming is to map different forms of a word to a single form. As a rules-based algorithm, dependent only upon the spelling of a word, it sacrifices accuracy to ensure that, for example, when 'laziness' is stemmed to 'lazi', it has the same stem as 'lazy'.