*** Welcome to piglix ***

Lehmann–Scheffé theorem


In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. The theorem states that any estimator which is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.

If T is a complete sufficient statistic for θ and E(g(T)) = τ(θ) then g(T) is the uniformly minimum-variance unbiased estimator (UMVUE) of τ(θ).

Let be a random sample from a distribution that has p.d.f (or p.m.f in the discrete case) where is a parameter in the parameter space. Suppose is a sufficient statistic for θ, and let be a complete family. If then is the unique MVUE of θ.


...
Wikipedia

...