*** Welcome to piglix ***

Lebesgue covering theorem


In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.

The first formal definition of covering dimension was given by Eduard Čech, based on an earlier result of Henri Lebesgue.

A modern definition is as follows. An open cover of a topological space X is a family of open sets whose union contains X. The ply or order of a cover is the smallest number n (if it exists) such that each point of the space belongs to at most n sets in the cover. A refinement of a cover C is another cover, each of whose sets is a subset of a set in C; its ply may be smaller than, or possibly larger than, the ply of C. The covering dimension of a topological space X is defined to be the minimum value of n, such that every open cover C of X has an open refinement with ply n + 1 or below. If no such minimal n exists, the space is said to be of infinite covering dimension.

As a special case, a topological space is zero-dimensional with respect to the covering dimension if every open cover of the space has a refinement consisting of disjoint open sets so that any point in the space is contained in exactly one open set of this refinement.

Any given open cover of the unit circle will have a refinement consisting of a collection of open arcs. The circle has dimension one, by this definition, because any such cover can be further refined to the stage where a given point x of the circle is contained in at most two open arcs. That is, whatever collection of arcs we begin with, some can be discarded or shrunk, such that the remainder still covers the circle but with simple overlaps.

Similarly, any open cover of the unit disk in the two-dimensional plane can be refined so that any point of the disk is contained in no more than three open sets, while two are in general not sufficient. The covering dimension of the disk is thus two.


...
Wikipedia

...