The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the solution of hyperbolic partial differential equations based on finite differences. The method can be described as the FTCS (forward in time, centered in space) scheme with an artificial viscosity term of 1/2. One can view the Lax–Friedrichs method as an alternative to Godunov's scheme, where one avoids solving a Riemann problem at each cell interface, at the expense of adding artificial viscosity.
Consider a one-dimensional, linear hyperbolic partial differential equation for of the form:
on the domain
with initial condition
and the boundary conditions
If one discretizes the domain to a grid with equally spaced points with a spacing of in the -direction and in the -direction, we define