*** Welcome to piglix ***

Law of conservation of energy


In physics, the law of conservation of energy states that the total energy of an isolated system remains constant—it is said to be conserved over time. Energy can neither be created nor destroyed; rather, it transforms from one form to another. For instance, chemical energy can be converted to kinetic energy in the explosion of a stick of dynamite.

A consequence of the law of conservation of energy is that a perpetual motion machine of the first kind cannot exist. That is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings.

Ancient philosophers as far back as Thales of Miletus c. 550 BCE had inklings of the conservation of some underlying substance of which everything is made. However, there is no particular reason to identify this with what we know today as "mass-energy" (for example, Thales thought it was water). Empedocles (490–430 BCE) wrote that in his universal system, composed of four roots (earth, air, water, fire), "nothing comes to be or perishes"; instead, these elements suffer continual rearrangement.

In 1605, Simon Stevinus was able to solve a number of problems in statics based on the principle that perpetual motion was impossible.

In 1638, Galileo published his analysis of several situations—including the celebrated "interrupted pendulum"—which can be described (in modern language) as conservatively converting potential energy to kinetic energy and back again. Essentially, he pointed out that the height a moving body rises is equal to the height from which it falls, and used this observation to infer the idea of inertia. The remarkable aspect of this observation is that the height that a moving body ascends to does not depend on the shape of the frictionless surface that the body is moving on.


...
Wikipedia

...