A volcanic dam is a type of natural dam produced directly or indirectly by volcanism, which holds or temporarily restricts the flow of surface water in existing streams, like a man-made dam. There are two main types of volcanic dams, those created by the flow of molten lava, and those created by the primary or secondary deposition of pyroclastic material and debris. This classification generally excludes other, often larger and longer lived dam-type geologic features, separately termed crater lakes, although these volcanic centers may be associated with the source of material for volcanic dams, and the lowest portion of its confining rim may be considered as such a dam, especially if the lake level within the crater is relatively high.
Volcanic dams generally occur worldwide, in association with former and active volcanic provinces, and are known to have existed in the geologic record, in historic times and occur in the present day. Their removal or failure is similarly recorded. The longevity, and extent varies widely, having periods ranging from a few days, weeks or years to several hundred thousand years or more, and dimensions ranging from a few meters to hundreds, to several thousand.
The emplacement, internal structure, distribution and longevity of such dams can be related variously to the amount, rapidity and duration of (primary) geothermal energy released, and the rock material made available; other considerations include the rock types produced, their physical and toughness characteristics, and their various modes of deposition. Depositional modes include gravity flow of molten lava at the surface, gravity flow or fall of pyroclastics through the air, as well as the redistribution and transportation of those materials by gravity and water.
Lava dams are formed by lava flowing or spilling into a river valley in sufficient quantity and height to temporarily overcome the explosive nature (steam) of its contact with water, and the erosive force of flowing water to remove it. The latter depends on the quantity of water flow and stream gradient. The lava may flow during numerous successive or repetitive eruptions and may emanate from single or numerous vents or fissures. Lava of this nature, like basalt, is usually associated with less explosive eruptions; more viscous lavas with lower mafic content, like dacites and rhyolites, can also flow, but tend to be more closely associated with eruptions of greater explosiveness and the formation of pyroclastics.