*** Welcome to piglix ***

Lattice (music)


In musical tuning, a lattice "is a way of modeling the tuning relationships of a just intonation system. It is an array of points in a periodic multidimensional pattern. Each point on the lattice corresponds to a ratio (i.e., a pitch, or an interval with respect to some other point on the lattice). The lattice can be two-, three-, or n-dimensional, with each dimension corresponding to a different prime-number partial" or chroma. (Note that "partial" in the above quote is a misnomer, because partials are sinusoidal components of complex tones, as defined by Helmholtz.)

The points in a lattice represent pitch classes (or pitches if octaves are represented), and the connectors in a lattice represent the intervals between them. The connecting lines in a lattice display intervals as vectors, so that a line of the same length and angle always has the same intervalic relationship between the points it connects, no matter where it occurs in the lattice. Repeatedly adding the same vector (repeatedly stacking the same interval) moves you further in the same direction. Lattices in just intonation (limited to intervals comprising primes, their powers, and their products) are theoretically infinite (because no power of any prime equals any power of another prime). However, lattices are sometimes also used to notate limited subsets that are particularly interesting (such as an Eikosany illustrated further below or the various ways to extract particular scale shapes from a larger lattice).

Examples of musical lattices include the Tonnetz of Euler (1739) and Hugo Riemann and the tuning systems of Ben Johnston. Musical intervals in just intonation are related to those in equal tuning by Adriaan Fokker's Fokker periodicity blocks. Many multi-dimensional higher-limit tunings have been mapped by Erv Wilson. The limit is the highest prime number used in the ratios that define the intervals used by a tuning.


...
Wikipedia

...