A speckle pattern is an intensity pattern produced by the mutual interference of a set of wavefronts. This phenomenon has been investigated by scientists since the time of Newton, but speckles have come into prominence since the invention of the laser and have now found a variety of applications. The term speckle pattern is also commonly used in the experimental mechanics community to describe the pattern of physical speckles on a surface which is useful for measuring displacement fields via digital image correlation.
Speckle patterns typically occur in diffuse reflections of monochromatic light such as laser light. Such reflections may occur on materials such as paper, white paint, rough surfaces, or in media with a large number of scattering particles in space, such as airborne dust or in cloudy liquids.
The speckle effect is a result of the interference of many waves of the same frequency, having different phases and amplitudes, which add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly. If each wave is modelled by a vector, then it can be seen that if a number of vectors with random angles are added together, the length of the resulting vector can be anything from zero to the sum of the individual vector lengths—a 2-dimensional random walk, sometimes known as a drunkard's walk. In the limit of many interfering waves the distribution of intensities (which go as the square of the vector's length) becomes exponential , where is the mean intensity.