*** Welcome to piglix ***

Larrabee (microarchitecture)


Larrabee is the codename for a cancelled GPGPU chip that Intel was developing separately from its current line of integrated graphics accelerators. It is named after Larrabee State Park in Whatcom County, Washington near the town of Bellingham. The chip was to be released in 2010 as the core of a consumer 3D graphics card, but these plans were cancelled due to delays and disappointing early performance figures. The project to produce a GPU retail product directly from the Larrabee research project was terminated in May 2010. The Intel MIC multiprocessor architecture announced in 2010 inherited many design elements from the Larrabee project, but does not function as a graphics processing unit; the product is intended as a co-processor for high performance computing.

On December 4, 2009, Intel officially announced that the first-generation Larrabee would not be released as a consumer GPU product. Instead, it was to be released as a development platform for graphics and high-performance computing. The official reason for the strategic reset was attributed to delays in hardware and software development. On May 25, 2010, the Technology@Intel blog announced that Larrabee would not be released as a GPU, but instead would be released as a product for High Performance Computing competing with the Nvidia Tesla.

The project to produce a GPU retail product directly from the Larrabee research project was terminated in May 2010. The Intel MIC multiprocessor architecture announced in 2010 inherited many design elements from the Larrabee project, but does not function as a graphics processing unit; the product is intended as a co-processor for high performance computing. The prototype card was named Knights Ferry, a production card built at a 22 nm process named Knights Corner was planned for production in 2012 or later.

Larrabee can be considered a hybrid between a multi-core CPU and a GPU, and has similarities to both. Its coherent cache hierarchy and x86 architecture compatibility are CPU-like, while its wide SIMD vector units and texture sampling hardware are GPU-like.


...
Wikipedia

...