In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or LEFT for short) can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.
The coefficient ring of complex cobordism is , where the degree of is 2i. This is isomorphic to the graded Lazard ring . This means that giving a formal group law F (of degree −2) over a graded ring is equivalent to giving a graded ring morphism . Multiplication by an integer n >0 is defined inductively as a power series, by