*** Welcome to piglix ***

Landsat 7

Landsat 7
Landsat7photo.jpg
Landsat 7 before launch
Mission type Earth imaging
Operator USGS / NASA
COSPAR ID 1999-020A
SATCAT № 25682
Mission duration Elapsed: 17 years, 9 months and 25 days
Spacecraft properties
Bus TIROS-N
Manufacturer Lockheed Martin Space Systems
Dry mass 2,200 kilograms (4,900 lb)
Power 1550 W
Start of mission
Launch date 15 April 1999, 18:32:00 (1999-04-15UTC18:32Z) UTC
Rocket Delta II 7920
Launch site Vandenberg SLC-2W
Contractor Boeing
Orbital parameters
Reference system Geocentric
Regime Sun-synchronous
Perigee 701 kilometers (436 mi)
Apogee 703 kilometers (437 mi)
Inclination 98.2126 degrees
Period 98.83 minutes
RAAN 234.2660 degrees
Argument of perigee 78.1806 degrees
Mean anomaly 281.9541 degrees
Mean motion 14.57108304
Repeat interval 16 days
Epoch 11 June 2016, 18:59:03 UTC
Landsat-7 Mission Patch.png

Landsat 7 is the seventh satellite of the Landsat program. Launched on April 15, 1999, Landsat 7's primary goal is to refresh the global archive of satellite photos, providing up-to-date and cloud-free images. The Landsat Program is managed and operated by the USGS, and data from Landsat 7 is collected and distributed by the USGS. The NASA World Wind project allows 3D images from Landsat 7 and other sources to be freely navigated and viewed from any angle. The satellite's companion, Earth Observing-1, trails by one minute and follows the same orbital characteristics. Landsat 7 was built by Lockheed Martin Space Systems Company.

Landsat 7 was designed to last for five years, and has the capacity to collect and transmit up to 532 images per day. It is in a polar, sun-synchronous orbit, meaning it scans across the entire earth's surface. With an altitude of 705 kilometers +/- 5 kilometers, it takes 232 orbits, or 16 days, to do so. The satellite weighs 1973 kg, is 4.04 m long, and 2.74 m in diameter. Unlike its predecessors, Landsat 7 has a solid state memory of 378 gigabits (roughly 100 images). The main instrument on board Landsat 7 is the Enhanced Thematic Mapper Plus (ETM+).

On May 31, 2003 the Scan Line Corrector (SLC) in the ETM+ instrument failed. The SLC consists of a pair of small mirrors that rotate about an axis in tandem with the motion of the main ETM+ scan mirror. The purpose of the SLC is to compensate for the forward motion (along-track) of the spacecraft so that the resulting scans are aligned parallel to each other. Without the effects of the SLC, the instrument images the Earth in a "zig-zag" fashion, resulting in some areas that are imaged twice and others that are not imaged at all. The net effect is that approximately 22% of the data in a Landsat 7 scene is missing when acquired without a functional SLC.

Following the SLC failure, an Anomaly Response Team (ART) was assembled, consisting of representatives from the USGS, NASA, and Hughes Santa Barbara Remote Sensing (the manufacturer of the ETM+ instrument). The team assembled a list of possible failure scenarios, most of which pointed at a mechanical problem with the SLC itself. Since there is no backup SLC, a mechanical failure would indicate that the problem was permanent. However, the team was unable to rule out the possibility of an electrical failure, though such a possibility was deemed remote. Nevertheless, on September 3, 2003, USGS director Charles G. Groat authorized the Landsat project to reconfigure the ETM+ instrument and various other subsystems on board Landsat 7 to use the spacecraft's redundant ("Side-B") electrical harness.


...
Wikipedia

...