*** Welcome to piglix ***

Lanczos algorithm


The Lanczos algorithm is a direct algorithm devised by Cornelius Lanczos that is an adaptation of power methods to find the most useful eigenvalues and eigenvectors of an order linear system with a limited number of operations, , where is much smaller than . Although computationally efficient in principle, the method as initially formulated was not useful, due to its numerical instability. In 1970, Ojalvo and Newman showed how to make the method numerically stable and applied it to the solution of very large engineering structures subjected to dynamic loading. This was achieved using a method for purifying the vectors to any degree of accuracy, which when not performed, produced a series of vectors that were highly contaminated by those associated with the lowest natural frequencies. In their original work, these authors also suggested how to select a starting vector (i.e. use a random number generator to select each element of the starting vector) and suggested an empirically determined method for determining , the reduced number of vectors (i.e. it should be selected to be approximately 1 ½ times the number of accurate eigenvalues desired). Soon thereafter their work was followed by Paige who also provided an error analysis. In 1988, Ojalvo produced a more detailed history of this algorithm and an efficient eigenvalue error test. Currently, the method is widely used in a variety of technical fields and has seen a number of variations.


...
Wikipedia

...