The Lahun Mathematical Papyri (also known as the Kahun Mathematical Papyri) is an ancient Egyptian mathematical text. It forms part of the Kahun Papyri, which was discovered at El-Lahun (also known as Lahun, Kahun or Il-Lahun) by Flinders Petrie during excavations of a workers' town near the pyramid of the 12th dynasty pharaoh Sesostris II. The Kahun Papyri are a collection of texts including administrative texts, medical texts, veterinarian texts and six fragments devoted to mathematics.
The mathematical texts most commented on are usually named:
The Lahun papyrus IV.2 reports a 2/n table for odd n, n = 1, , 21. The Rhind Mathematical Papyrus reports an odd n table up to 101. These fraction tables were related to multiplication problems and the use of unit fractions, namely n/p scaled by LCM m to mn/mp. With the exception of 2/3, all fractions were represented as sums of unit fractions (i.e. of the form 1/n), first in red numbers. Multiplication algorithms and scaling factors involved repeated doubling of numbers, and other operations. Doubling a unit fraction with an even denominator was simple, divided the denominator by 2. Doubling a fraction with an odd denominator however results in a fraction of the form 2/n. The RMP 2/n table and RMP 36 rules allowed scribes to find decompositions of 2/n into unit fractions for specific needs, most often to solve otherwise un-scalable rational numbers (i.e. 28/97 in RMP 31,and 30/53 n RMP 36 by substituting 26/97 + 2/97 and 28/53 + 2/53) and generally n/p by (n - 2) /p + 2/p. Decompositions were unique. Red auxiliary numbers selected divisors of denominators mp that best summed to numerator mn.