*** Welcome to piglix ***

Lagrangian system


In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle YX and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of YX.

In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis . In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.

A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold JrY of Y.

A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O(Y) of exterior forms on jet manifolds of YX. The coboundary operator of this bicomplex contains the variational operator δ which, acting on L, defines the associated Euler–Lagrange operator δL.

Given bundle coordinates xλ, yi on a fiber bundle Y and the adapted coordinates xλ, yi, yiΛ, (Λ = (λ1, ...,λk), |Λ| = kr) on jet manifolds JrY, a Lagrangian L and its Euler–Lagrange operator read


...
Wikipedia

...