In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X.
In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis ℝ. In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.
A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold JrY of Y.
A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O∗∞(Y) of exterior forms on jet manifolds of Y → X. The coboundary operator of this bicomplex contains the variational operator δ which, acting on L, defines the associated Euler–Lagrange operator δL.
Given bundle coordinates xλ, yi on a fiber bundle Y and the adapted coordinates xλ, yi, yiΛ, (Λ = (λ1, ...,λk), |Λ| = k ≤ r) on jet manifolds JrY, a Lagrangian L and its Euler–Lagrange operator read