*** Welcome to piglix ***

Ladder logic


Ladder logic was originally a written method to document the design and construction of relay racks as used in manufacturing and process control. Each device in the relay rack would be represented by a symbol on the ladder diagram with connections between those devices shown. In addition, other items external to the relay rack such as pumps, heaters, and so forth would also be shown on the ladder diagram. See relay logic.

Ladder logic has evolved into a programming language that represents a program by a graphical diagram based on the circuit diagrams of relay logic hardware. Ladder logic is used to develop software for programmable logic controllers (PLCs) used in industrial control applications. The name is based on the observation that programs in this language resemble ladders, with two vertical rails and a series of horizontal rungs between them. While ladder diagrams were once the only available notation for recording programmable controller programs, today other forms are standardized in IEC 61131-3 (For example, as an alternative to the graphical ladder logic form, there is also a more assembly language like format called Instruction list within the IEC 61131-3 standard.).

Ladder logic is widely used to program PLCs, where sequential control of a process or manufacturing operation is required. Ladder logic is useful for simple but critical control systems or for reworking old hardwired relay circuits. As programmable logic controllers became more sophisticated it has also been used in very complex automation systems. Often the ladder logic program is used in conjunction with an HMI program operating on a computer workstation.

The motivation for representing sequential control logic in a ladder diagram was to allow factory engineers and technicians to develop software without additional training to learn a language such as FORTRAN or other general purpose computer language. Development, and maintenance, was simplified because of the resemblance to familiar relay hardware systems. Implementations of ladder logic have characteristics, such as sequential execution and support for control flow features, that make the analogy to hardware somewhat inaccurate. This argument has become less relevant given that most ladder logic programmers have a software background in more conventional programming languages.


...
Wikipedia

...