Laboratory robotics is the act of using robots in biology or chemistry labs. For example, pharmaceutical companies employ robots to move biological or chemical samples around to synthesize novel chemical entities or to test pharmaceutical value of existing chemical matter. Advanced laboratory robotics can be used to completely automate the process of science, as in the Robot Scientist project.
Laboratory processes are suited for robotic automation as the processes are composed of repetitive movements (e.g. pick/place, liquid & solid additions, heating/cooling, mixing, shaking, testing). Many laboratory robots are commonly referred as autosamplers, as their main task is to provide continuous samples for analytical devices.
The first compact computer controlled robotic arms appeared in the early 1980s, and have continuously been employed in laboratories since then. These robots can be programmed to perform many different tasks, including sample preparation and handling.
Yet in the early 1980s, a group led by Dr. Masahide Sasaki, from Kochi Medical School, introduced the first fully automated laboratory employing several robotic arms working together with conveyor belts and automated analyzers. The success of Dr. Sasaki's pioneer efforts made other groups around the world to adopt the approach of Total Laboratory Automation (TLA).
Despite the undeniable success of TLA, its multimillion-dollar cost prevented that most laboratories adopted it. Also, the lack of communication between different devices slowed down the development of automation solutions for different applications, while contributing to keeping costs high. Therefore, the industry attempted several times to develop standards that different vendors would follow in order to enable communication between their devices. However, the success of this approach has been only partial, as nowadays many laboratories still do not employ robots for many tasks due to their high costs.
Recently, a different solution for the problem became available, enabling the use of inexpensive devices, including open-source hardware, to perform many different tasks in the laboratory. This solution is the use of scripting languages that can control mouse clicks and keyboard inputs, like AutoIt. This way, it is possible to integrate any device by any manufacturer as long as they are controlled by a computer, which is often the case.
Another important development in robotics which has important potential implications for laboratories is the arrival of robots that do not demand special training for their programming, like Baxter, the robot.