Lactobacillus rhamnosus | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Firmicutes |
Class: | Bacilli |
Order: | Lactobacillales |
Family: | Lactobacillaceae |
Genus: | Lactobacillus |
Species: | L. rhamnosus |
Binomial name | |
Lactobacillus rhamnosus (Hansen 1968) Collins et al. 1989 |
Lactobacillus rhamnosus is a bacterium that originally was considered to be a subspecies of L. casei, but later genetic research found it to be a species of its own. It is a short Gram-positive heterofermentative facultative anaerobic non-spore-forming rod that often appears in chains. Some strains of L. rhamnosus bacteria are being used as probiotics, and are particularly useful in treating female-related infections, most particularly very difficult to treat cases of bacterial vaginosis (or "BV"). The Lactobacillus rhamnosus and L. reuteri species are most commonly found in the healthy female genito-urinary tract and are most helpful to supplement in order to regain control over dysbiotic bacterial overgrowth during an active infection. L. rhamnosus sometimes is used in yogurt and dairy products such as fermented and un-pasteurized milk and semi-hard cheese. While frequently considered a beneficial organism, L. rhamnosus may not be as beneficial to certain subsets of the population; in rare circumstances, especially those primarily involving weakened immune system or infants, it may cause endocarditis.
Lactobacillus rhamnosus has a wide variety of strains that have been isolated from many different environments including the vagina and gastrointestinal tract. L. rhamnosus strains have the capacity for strain-specific gene functions that are required to adapt to a large range of environments. Its core genome contains 2,164 genes, out of 4,711 genes in total (the pan genome). The accessory genome is overtaken by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides, biosynthesis, bacteriocin production, pili production, the cassystem, the clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements such as phages, plasmid genes, and transposons.