Krypton 85 (85Kr) is a radioisotope of krypton.
It has a half-life of 10.756 years and a maximum decay energy of 687 keV. It decays into stable, non-radioactive rubidium-85. Its most common decay (99.57%) is by beta particle emission with maximum energy of 687 keV and an average energy of 251 keV. The second most common decay (0.43%) is by beta particle emission (maximum energy of 173 keV) followed by gamma ray emission (energy of 514 keV).
Other decay modes have very small probabilities and emit less energetic gammas. There are 33 other known isotopes of krypton.
In terms of radiotoxicity, 440 Bq of Kr-85 is equivalent to 1 Bq of radon-222, without considering the rest of the radon decay chain.
Krypton-85 is produced in small quantities by the interaction of cosmic rays with stable krypton-84 in the atmosphere. Natural sources maintain an equilibrium inventory of about 0.09 PBq in the atmosphere.
However, as of 2009 the total amount in the atmosphere is estimated at 5500 PBq due to anthropogenic sources. At the end of the year 2000, it was estimated to be 4800 PBq, and in 1973, an estimated 1961 PBq (53 Megacuries). The most important of these human sources is nuclear fuel reprocessing. Nuclear fission produces about three atoms of krypton-85 for every 1000 fissions; i.e. it has a fission yield of 0.3%. Most or all of this krypton-85 is retained in the spent nuclear fuel rods; spent fuel on discharge from a reactor contains between 0.13-1.8 PBq/Mg of krypton-85. Some of this spent fuel is reprocessed. Current nuclear reprocessing releases the gaseous Kr-85 to the atmosphere when the spent fuel is dissolved. It would be possible in principle to capture and store this krypton gas as nuclear waste or for use. The cumulative global amount of krypton-85 released from reprocessing activity has been estimated as 10,600 PBq as of 2000. The global inventory noted above is smaller than this amount due to radioactive decay; a smaller fraction is dissolved into the deep oceans.