*** Welcome to piglix ***

Kosterlitz-Thouless transition


The Berezinskii–Kosterlitz–Thouless transition (BKT transition) is a phase transition in the two-dimensional (2-D) XY model. It is a transition from bound vortex-antivortex pairs at low temperatures to unpaired vortices and anti-vortices at some critical temperature. The transition is named for condensed matter physicists Vadim Berezinskii, John M. Kosterlitz and David J. Thouless. BKT transitions can be found in several 2-D systems in condensed matter physics that are approximated by the XY model, including Josephson junction arrays and thin disordered superconducting granular films. More recently, the term has been applied by the 2-D superconductor insulator transition community to the pinning of Cooper pairs in the insulating regime, due to similarities with the original vortex BKT transition.

Work on the transition led to the 2016 Nobel Prize in Physics being awarded to Thouless, Kosterlitz and Duncan Haldane.

The XY model is a two-dimensional vector spin model that possesses U(1) or circular symmetry. This system is not expected to possess a normal second-order phase transition. This is because the expected ordered phase of the system is destroyed by transverse fluctuations, i.e. the Nambu-Goldstone modes (see Goldstone boson) associated with this broken continuous symmetry, which logarithmically diverge with system size. This is a specific case of what is called the Mermin–Wagner theorem in spin systems.

Rigorously the transition is not completely understood, but the existence of two phases was proved by McBryan & Spencer (1977) and Fröhlich & Spencer (1981).


...
Wikipedia

...