In mathematics, the Koenigs function is a function arising in complex analysis and dynamical systems. Introduced in 1884 by the French mathematician Gabriel Koenigs, it gives a canonical representation as dilations of a univalent holomorphic mapping, or a semigroup of mappings, of the unit disk in the complex numbers into itself.
Let D be the unit disk in the complex numbers. Let f be a holomorphic function mapping D into itself, fixing the point 0, with f not identically 0 and f not an automorphism of D, i.e. a Möbius transformation defined by a matrix in SU(1,1).
By the Denjoy-Wolff theorem, f leaves invariant each disk |z | < r and the iterates of f converge uniformly on compacta to 0: in fact for 0 < r < 1,
for |z | ≤ r with M(r ) < 1. Moreover f '(0) = λ with 0 < |λ| < 1.
Koenigs (1884) proved that there is a unique holomorphic function h defined on D, called the Koenigs function, such that h(0) = 0, h '(0) = 1 and Schröder's equation is satisfied,
The function h is the uniform limit on compacta of the normalized iterates, .