In operator algebra, the Koecher–Vinberg theorem is a reconstruction theorem for real Jordan algebras. It was proved independently by Max Koecher in 1957 and Ernest Vinberg in 1961. It provides a one-to-one correspondence between formally real Jordan algebras and so-called domains of positivity. Thus it links operator algebraic and convex order theoretic views on state spaces of physical systems.
A convex cone is called regular if whenever both and are in the closure .