In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.
Conway and Hart extended the idea of using operators, like truncation defined by Kepler, to build related polyhedra of the same symmetry. The basic descriptive operators can generate all the Archimedean solids and Catalan solids from regular seeds. For example, tC represents a truncated cube, and taC, parsed as t(aC), is a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements, like a dual cube is an octahedron: dC=O. Applied in a series, these operators allow many higher order polyhedra to be generated. A resulting polyhedron will have a fixed topology (vertices, edges, faces), while exact geometry is not constrained.
The seed polyhedra are the Platonic solids, represented by the first letter of their name (T,O,C,I,D); the prisms (Pn) for n-gonal forms, antiprisms (An), cupolae (Un), anticupolae (Vn) and pyramids (Yn). Any polyhedron can serve as a seed, as long as the operations can be executed on it. For example regular-faced Johnson solids can be referenced as Jn, for n=1..92.
In general, it is difficult to predict the resulting appearance of the composite of two or more operations from a given seed polyhedron. For instance ambo applied twice becomes the same as the expand operation: aa=e, while a truncation after ambo produces bevel: ta=b. There has been no general theory describing what polyhedra can be generated in by any set of operators. Instead all results have been discovered empirically.